Mathematical Models on Cyber Attack

Bimal Kumar Mishra, Ph. D., D.Sc. Department of Applied Mathematics Birla Institute of Technology, Mesra, Ranchi – 835 215 Email: drbimalmishra@gmail.com

PUBLICATIONS (75)

- International Journals: 54
- National Journals: 05
 Conference Proceedings: 16
- Research Area: Mathematical Models on Cyber Attack and Defense Blood Flow

Attack by malicious objects in computer network are EPIDEMIC in nature

Malicious objects:

COMPUTER VIRUS COMPUTER WORMS TROZAN HORSE SNIFFERS Denial of Service (DoS) FLOODER etc.

Basic Terminologies:

Computer virus is a program that can "infect" other programs by modifying them to include a possibly evolved version of it. With this infection property, a virus can spread to the transitive closure of information flow, corrupting the integrity of information as it spreads.

Basic Terminologies:

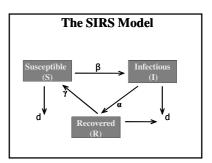
Self replicating virus may be defined as "A software program capable of reproducing itself and usually capable of causing great harm to files or other programs on the same computer; "a true virus cannot spread to another computer without human assistance.

Anti-malicious software

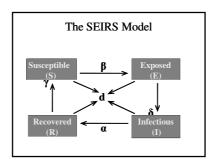
is a class of program that searches our hard drive and floppy disks for any known or potential viruses. This is also known as a "virus scanner." As new viruses are discovered by the antivirus vendor, their binary patterns are added to a signature database that is downloaded periodically to the user's antivirus program via the web.

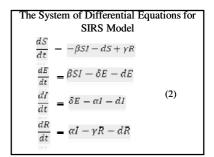
like:	
MALARIA	
SARS	
HIV etc.	

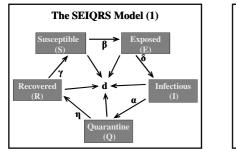
Vari	ous epidemic models
	SIR
	SIS
	SEIR etc.

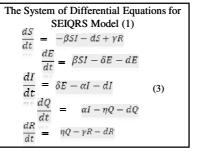


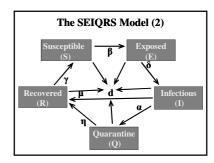
The Syste	em of Differential SIRS Model	Equations for
dS dt	$-\beta SI - dS + \gamma R$	
$\frac{dI}{dt} =$	$\beta SI - \alpha I - dI$	(1)
$\frac{dR}{dt} =$	$\alpha I - \gamma R - dR$	

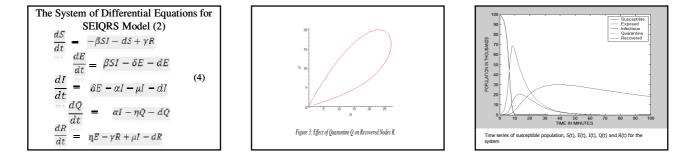












SIR assumptions:

(i)

An average infective nodes makes contact sufficient to transmit infection of malicious codes with βN others per unit time, where N represents the total nodes in the computer network, that is, population size and β is called the **infectious contact rate**, that is the rate of infection per susceptible and per infective.

SIR contd.

Since the prob. that a random contact by an infective is with a susceptible, who then can transmit infection, is S/N, the number of new infections in unit time is $(\beta N)(S/N)I=\beta SI.$

Thus,
$$S' = -\beta SI$$

SIR contd.

Note:

For the nodes which are infected my malicious codes recover when anti-malicious software is run, that is recover with immunity,

 $\mathbf{N} = \mathbf{S} + \mathbf{I} + \mathbf{R}$

SIR contd.

A fraction α of infectives leave the infective class per unit time.

(iii)

(ii)

There is no entry into or departure from the population, except possibly through death from the infection due to malicious codes.

SIR contd.
• Based on our assumption, we have the
following system of equations:

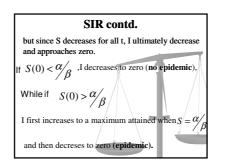
$$S' = -\beta SI$$

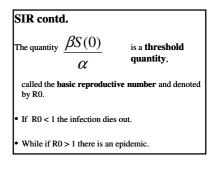
 $I' = \beta SI - \alpha I$ ⁽¹⁾
 $R' = \alpha I$

SIR contd.	
THRESHOLD PARAMETER	
In our model R is determined one known, and we can drop the R' of our model, that is, in (1) leaving the equations $S' = -\beta SI$ $I' = (\beta S - \alpha)I$	equation from

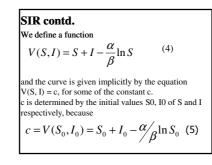
SIR contd.

$\therefore S' < 0, \forall t$ $I' > 0 iff S > \alpha / \beta$ Thus I increases so long as $S > \alpha / \beta$
Thus I increases so long as
, .
$s > \alpha/a$
$57/\beta$

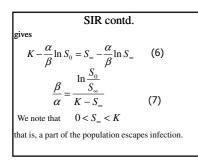


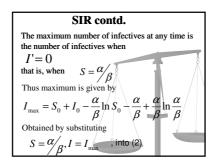


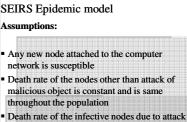
SIR contd.
We divide the two equations (1) of the model to give
$\frac{I'}{S'} = \frac{dI}{dS} = \frac{(\beta S - \alpha)I}{-\beta SI} = -1 + \frac{\alpha}{\beta S}$
and integrate to find the orbits (curve in the S–I plane) $I = -S + \frac{\alpha}{\beta} \ln S + c$ (3)
with c as an arbitrary constant of integration.



SIR contd. Let us think a population of nodes of size K into which a small number of infective nodes is introduced, so that $S_0 \approx K, I_0 \approx 0$, and $R_0 = \frac{\beta K}{\alpha}$ If we use the fact that $\lim_{t \to \infty} I(t) = 0$, and let $S_{\infty} = \lim_{t \leftarrow \infty} S(t)$ then the relation $V(S_0, I_0) = V(S_{\infty}, 0)$







of malicious object is constant

SEIRS contd.

probability (1-p).

• Latent period ω and immune period τ is constant

 Waiting time in the infective, exposed and recovered class is exponentially distributed
 When a node is removed from the infected class, it recovers *temporarily*, acquiring *temporary* immunity with probability p and dies from the attack of malicious object with

Simple SEIRS epidemic model

$$\frac{dS}{dt} = -\beta IS$$

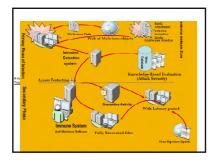
$$\frac{dE}{dt} = \beta IS - \delta E$$

$$\frac{dI}{dt} = \delta E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

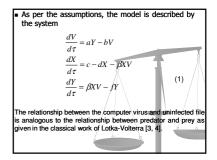
MATHEMATICAL MODELS ON INTERACTION BETWEEN COMPUTER VIRUS AND ANTIVIRUS SOFTWARE INSIDE A COMPUTER SYSTEM Attempt has been made to develop mathematical models on interaction between computer virus and antivirus software inside a computer system. The basic reproductive ratio in the absence and presence of the immune system has been found and the criterion of spreading the computer virus is analyzed in Models 1 and 2. An analysis is also made for the immune response to clear the infection.

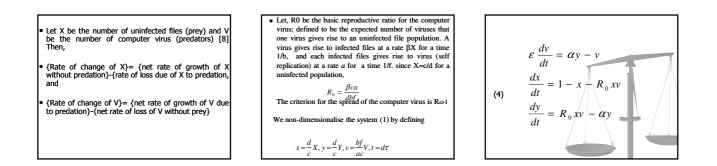
Effect of new or updated antivirus software on such viruses which are suppressed (quarantine) or not completely recovered by the lower version of installed antivirus software in the system is studied in model 3 and it has been shown that the number of infected files falls exponentially when new or updated antivirus software is run. Reactivation of computer virus when they are in the latent class is mathematically formulated and basic reproductive ratio is obtained in Model 4. A mathematical model has also been developed to understand the recent attack of the malicious object <u>Backdoor.Haxdoor.S</u> and <u>Trojan.Schoeberl.E</u> and its removal by newly available tool FixSchoeb-Haxdoor in Model 5.



Model 1: Primary phase of an Infection

Viruses get entry to the computer node via various means (emails, infected disks etc.) and hijack various files (command files, executable files, kernel.dll, etc.) in the node for its own replication. It then leaves a specific file and the process is repeated. Viruses may be of different nature and as per their mode of propagation; they target different file types of the attacked computer for this purpose.



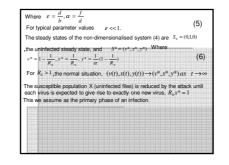


where

For typical parameter values $\varepsilon \ll 1$. $S_0 = (0,1,0)$

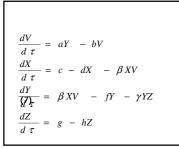
The steady states of the non-dimensionalised system (4) are

And S* =(v*,x*,y*) where V*= 1-1/R, x*= 1/R, y*=1/a(1-1/Ro)



Model II: Secondary Phase of Infection (Effect of Immune system)

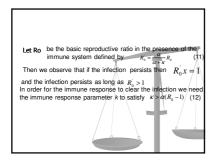
We assume the response of the immune in the computer system due to antivirus software Z which are run at a constant rate g and h being the death rate of antivirus software (which mean to say that the antivirus software is incapable to identify the attack of new viruses). The antivirus software cleans the infected files at a rate. There is an analogy here of Z antivirus software as predators and Y infected files as prey. We take linear functional response of Z



The non-dimensionalisation of the system is don
as what we have done in Model 1, with
$$z = \frac{hZ}{g}$$
in addition, we get,
$$\varepsilon \frac{dv}{dt} = ay - v$$
$$\frac{dx}{dt} = 1 - x - R_{y}xv$$
(8)
$$\frac{dy}{dt} = R_{y}xv - ay - xyz$$
$$\frac{dz}{dt} = \lambda(1 - z)$$
$$\lambda = \frac{h}{d}, \kappa = \frac{2\pi}{dh}$$

The steady states of the non-dimensionalised system (8) are

$$S_0 = (010.0)$$
, the uninfected steady state, and $S^* = (v^*, x^*, y^*, z^*)$
 $v^* = \frac{\alpha}{\alpha + \kappa} (1 - \frac{1}{R_0})$
 $x^* = \frac{1}{R_0}$
 $y^* = \frac{1}{\alpha + \kappa} ((1 - \frac{1}{R_0}))$ (10)
 $z^* = 1$



Model III: Effect of new antivirus software on such viruses which are suppressed (quarantine)

We assume a case where the viruses are not completely cleaned (quarantine) from the infected files on run of installed antivirus software on the computer node. For the complete recovery of infected files from viruses, updated version of antivirus has to be run. Further we assume that such updated antivirus software is available and is 100% efficient. This antivirus software switches β to zero and thus the equations for the subsequent dynamics of the infected files and free virus from equation (1) is expressed as

$$\frac{dV}{d\tau} = aY - bV$$
$$\frac{dX}{d\tau} = c - dX$$
$$\frac{dY}{d\tau} = -fY$$

processes	$Y_0 e^{-ft}$	
<i>V</i> =	$\frac{V_0(be^{-ft} - fe^{-bt})}{(b-f)}$	(14)
exponential	on (14) we are able to say that the number y. The behavior of V follows from the assu	imption on half-lives, so that
<< b , that	is, the amount of free virus falls exponent	ially after a shoulder phase.

Model IV: Reactivation of computer virus after they are in latent class

When computer virus attacks the computer node, some of them enter a latent class on their infection. While in this class they do not produce new viruses, but may later be reactivated to do so. Only the files in the productive infected class Y1 produce viruses, and files at latent infected class Y2 leave for Y1 at a per capita rate δ . Thus our system becomes:

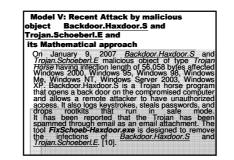
$$\frac{dV}{d\tau} = aY_1 - bV$$

$$\frac{dX}{d\tau} = c - dX - \beta XV$$

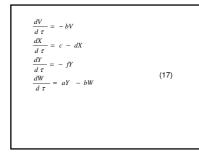
$$\frac{dY_1}{d\tau} = q_1\beta XV - f_1Y_1 + \delta Y_2$$

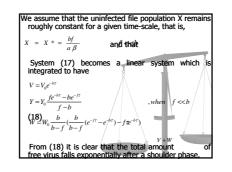
$$\frac{dY_2}{d\tau} = q_2\beta XV - f_2Y_2 - \delta Y_2$$
(15)

Infected files at class Y₂ produce viruses in classY₁ at a rate δ for a time $\frac{1}{\delta + f_2}$ Thus adding the contribution of both the classes, the reproductive ratio R₀ is expressed as $R_0 = \frac{\beta c}{db} (q_1 + q_2 \frac{\delta}{\delta + f_2}) \frac{a}{f_1}$ (16)



FixSchoeb-Haxdoor.exe tool meant to remove the deadly <u>Backdoor.Haxdoor.S</u> and <u>Trojan.Schoeber/.E</u> prevent infected files from producing infectious virus. We assume that W are the un- infectious virus which start to be produced from the infected files Y after the tool FixSchoeb-Haxdoor.exe is run. Infectious virus are still present, and die as before, but are no longer produced. Under this assumption the system can be modeled as





Discussion and Conclusion

The threshold parameter obtained in (2) for primary phase of infection discusses the criterion for the spread of the computer virus, that is, $R_o > 1$. The susceptible population X (uninfected files) is reduced by the attack until each virus expected to give rise to exactly one new virus,

 $R_0 x^* = 1$

For the viruses which are quarentined by the installed antivirus software, we assume that updated antivirus software is available and is 100% efficient. When this updated antivirus software is run, from equation (14) we are able to say that the number of infected files falls exponentially. The behavior of V follows from the assumption on half-lives, so that f << b

that is, the amount of free virus falls exponentially after a shoulder phase. Discussion is also made for those viruses which enter a latent class on their infection and in this class they do not produce new viruses, but may later be reactivated to do so. Infected files at class Y_2 produce viruses in class Y_1 at a rate δ for a time $1/\delta + f$ and the reproductive ratio is also obtained.

Nomenclature

- V :number of viruses in the computer
- number of uninfected target files Χ:
- Υ: number of infected files a : Replicating factor
- b : Death rate of a virus
- Birth of uninfected files by users c :
- d : Natural Death of an uninfected file Death rate of infected files
- e : f = e + d

- β : Infectious contact rate, i.e., the rate of election per susceptible and per infective
- R₀ : Threshold parameter
- Ζ : Response of antivirus software,
- which immunes the system
- g : Rate at which antivirus software is
- run, which is constant
- h : Death rate of antivirus software

: Rate at which antivirus software cleans the infected files : Immune response parameter

- Y1: productive infected class
- Y2: latent infected class Q1: Probability of entering productive
- infected class
- Q2 : Probability of entering latent infected class

References

- Bimal Kumar Mishra, D.K Saini, SEIRS epidemic. model with delay for transmission of malicious objects in computer network, Applied Mathematics and Computation, 188 (2007) 1476-1482
- [2] Bimal Kumar Mishra, Dinesh Saini, Mathematical models on computer viruses, Applied Mathematics and Computation, 187 (2007) 929-936
- [3] Lotka, A. J., Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925; Reissued as Elements of Mathematical Biology, Dover, New York, 1956.

[4] Volterra, V., Variazioni e fluttazioni del numero d'individui in specie animali conviventi, Mem. Acad. Sci. Lincei, 1926, 2:31-13

[5] Jones, A.K. and Sielken, R.S., Computer System Intrusion detection: a survey, Technical report, Computer Science Department, University of Virginia, 2000

] Yu, J., Reddy, R., Selliah, S., Reddy, S., Bharadwaj, V. and Kankanahalli S., TRINETR: An Architecture for Collaborative Intrusion Detection and Knowledge-Based Alert Evaluation, In Advanced Engineering Informatics Journal, Special Issue on Collaborative Environments for Design and Manufacturing, Editor: Weiming Shen. Volume 19, Issue 2, April 2005. Elsevier Science, 93
 [6] Yu, J.,

[7] Jinqiao Yu, Y.V.Ramana Reddy, Sentil Selliah, Srinivas Kankanahalli, Sumitra Reddy and Vijayanand Bhardwaj, A Collaborative Architecture for Intrusion Detection Systems with Intelligent Agents and Knowledge based alert Evaluation, In the Proceedings of IEEE 8th International Conference on Computer Supported Cooperative work in Design, 2004, 2: 271-276

[8] Nicholas F. Britton, Essential Mathematical Biology, Springer-Verlag, London, 2003 [9] Bimal Kumar Mishra, Navnit Jha, Fixed period of temporary immunity after run of anti-malicious objects software on computer nodes, Applied Mathematics and Computation, 190 (2007) 1207-1212

http://www.symantec.com/smb/security_response/ writeup.jsp?docid=2007-011109-2557-99
 Masud, Mohammad M., Khan, Latifur and Thuraisingham, Bhavani, A. Knowledge-based Approach to detect new Malicious Executables. In the proceedings of the Second Secure Knowledge Management Workshop (SKM) 2006, Brooklyn, NY, USA
 http://www.f-secure.com/f-secure/pressroom/news/fsnews_20080331_1_eng .html, March 31, 2008

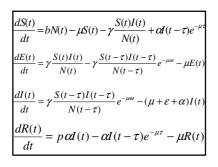
Thank You !

NOMENCLATURE

N (t): Total Population size
E (t): Exposed Population
S (t): Susceptible Population
I (t): Infected Population
R (t): Recovered Population
b: Per capita birth rate
µ: Per capita death rate due to causes other than attack of malicious object
E: Death rate due to malicious objects and is constant in the infective class

α: Recovery rate which is constant

- γ: Product of average number of contacts of a node per unit time and the probability of transmitting the malicious object during one contact by an infective.
- ω: Period of latency, which is constant and nonnegative
- t: Period of *temporary* immunity, which is constant and non-negative
- p: Probability of *temporary* immunity acquired when a node is recovered from the infective class



$$\begin{split} N(t) &= S(t) + I(t) + E(t) + R(t) \\ \text{For the continuity of the solution to this system , we} \\ require, \\ E(0) &= \int_{-\infty}^{0} \frac{\mathcal{K}(u)I(u)}{N(u)} e^{\mu u} du \\ R(0) &= \int_{-\tau}^{0} p \alpha I(u) e^{\mu u} du \\ \text{From the above system , we also get,} \\ \frac{dN(t)}{dt} &= (b - \mu)N(t) - (b - (1 - p)\alpha)\mathcal{E}I(t) \end{split}$$

References

- A D'Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Applied Mathematics Letter 18 (2005) 729-732 A D'Onofrio Stability properties of pulse
- A D'Onofrio, Stability properties of pulse vaccination strategy in SIER epidemic model, Math Bioscience 179(2002) 57-72 Bimal Kumar Mishra Dinesh Saini Mathema
- Bimal Kumar Mishra, Dinesh Saini, Mathematical models on computer viruses, Applied Mathematics and Computation, 187 (2007) 929-936.
- Bimal Kumar Mishra, Navnit Jha, Fixed period of temporary immunity after run of anti-malicious objects software on computer nodes, Applied Mathematics and Computation, 190 (2007) 1207-1212

- Bimal Kumar Mishra, et al, Differential susceptibility-infectiousness epidemic model of propagation of malicious objects with selfreplication in a computer network, Applied Mathematics and Computation, doi: 10.1016/j.amc.2007.03.052
 Bimal Kumar Mishra, D.K Saini, SEIRS epidemic
- model with delay for transmission of malicious objects in computer network, Applied Mathematics and Computation, 188 (2007) 1476-1482.
 Bimal Kumar Mishra, Generality of the final size
- formula for infected nodes due to the attack of malicious objects in a computer network, Applied Mathematics and Computation, doi: 10.1016/j.amc.2007.04.071
- G. Zeng, L. Chen, Complexity and asymptotical behavior of a SIRS epidemic model with proportional impulse vaccination, Advance Complex Systems 8 (4) (2005) 419-431
- H.W.Hethcote and P. Driessche, An SIS epidemic model with variable population size and a delay, J. Math. Biol. 34(1995)177-194
- H.W.Hethcote and P. Driessche, Two SIS epidemiologic models with delays, J. Math. Biol. 40(2000) 3-26
- K. Cooke and P. Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol. 35(1996) 240-260

M. E. J. Newman, Stephanie Forrest, and Justin Balthrop, Email networks and the spread of computer viruses, Physical Review E 66 (2002) 035101-4 E. Beretta, T. Hara et al, Global asymptotic stability of an SIR epidemic model with distributed time delays, Non Linear Analysis 47 (2007) 4107-4115 G. Li, Z. Jin, Global stability of a SIER epidemic model with infectious force in latent, infected and immune period, Chaos Solutions and Fractals 25(2005) 1177-1184

- S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a non linear incidence rate, Journal of Differential Equations 1882(2003) 135-163
 W. Wang, Global behavior of an SIERS epidemic model with time delays, Applied Mathematics Letter 15(2002) 57-72
 X. Meng, L.Chen, H.Cheng, Two profiless delays for the SEIRS epidemic disease model with non-linear incidence and pulse vaccination, Applied Mathematics and Computation, 186(2007) 516-529.
 Y. Michael, H.Smith, L.Wang, Global dynamics of SIER epidemic model with vertical transmission, SIAM Journal of Applied Mathematics 62(1) (2001) 58-69
 Z. Jin, Z. Ma, The stability of an SIR epidemic model with time delays, Math Bioscience Engineering 3(1) (2006) 101-109